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A B S T R A C T

The primary objective of the European Space Agency's 7th Earth Explorer mission, BIOMASS, is to determine the
worldwide distribution of forest above-ground biomass (AGB) in order to reduce the major uncertainties in
calculations of carbon stocks and fluxes associated with the terrestrial biosphere, including carbon fluxes as-
sociated with Land Use Change, forest degradation and forest regrowth. To meet this objective it will carry, for
the first time in space, a fully polarimetric P-band synthetic aperture radar (SAR). Three main products will be
provided: global maps of both AGB and forest height, with a spatial resolution of 200m, and maps of severe
forest disturbance at 50m resolution (where “global” is to be understood as subject to Space Object tracking
radar restrictions). After launch in 2022, there will be a 3-month commissioning phase, followed by a 14-month
phase during which there will be global coverage by SAR tomography. In the succeeding interferometric phase,
global polarimetric interferometry Pol-InSAR coverage will be achieved every 7months up to the end of the 5-
year mission. Both Pol-InSAR and TomoSAR will be used to eliminate scattering from the ground (both direct
and double bounce backscatter) in forests. In dense tropical forests AGB can then be estimated from the re-
maining volume scattering using non-linear inversion of a backscattering model. Airborne campaigns in the
tropics also indicate that AGB is highly correlated with the backscatter from around 30m above the ground, as
measured by tomography. In contrast, double bounce scattering appears to carry important information about
the AGB of boreal forests, so ground cancellation may not be appropriate and the best approach for such forests
remains to be finalized. Several methods to exploit these new data in carbon cycle calculations have already been
demonstrated. In addition, major mutual gains will be made by combining BIOMASS data with data from other
missions that will measure forest biomass, structure, height and change, including the NASA Global Ecosystem
Dynamics Investigation lidar deployed on the International Space Station after its launch in December 2018, and
the NASA-ISRO NISAR L- and S-band SAR, due for launch in 2022. More generally, space-based measurements of
biomass are a core component of a carbon cycle observation and modelling strategy developed by the Group on
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Earth Observations. Secondary objectives of the mission include imaging of sub-surface geological structures in
arid environments, generation of a true Digital Terrain Model without biases caused by forest cover, and
measurement of glacier and icesheet velocities. In addition, the operations needed for ionospheric correction of
the data will allow very sensitive estimates of ionospheric Total Electron Content and its changes along the
dawn-dusk orbit of the mission.

1. Introduction: the role of biomass in the global carbon cycle and
climate

For millennia, humanity has depended on woody biomass from
forests as a source of materials and energy (Rackham and Moody, 1996;
Radkau, 2012), and this dependence shows no sign of abating. For
example, around a third of the world's population relies on biomass for
energy, and in sub-Saharan Africa around 81% of the energy use by
households is provided by burning woody biomass (World Bank, 2011).
At the same time, forest, and its associated biomass, has often been
treated as an impediment to development, and huge tracts have been
cleared, and continue to be cleared, to make way for agriculture, pas-
ture and agro-forestry (FAO, 2016). However, a significant shift in the
relationship between mankind and biomass has occurred as climate
change has become of pressing international concern and the role of
forest biomass within this process has become clearer (IPCC, 2007,
2013).

Climate change is intimately connected with the global carbon
balance and the fluxes of greenhouses gases, especially carbon dioxide
(CO2), between the Earth's surface and the atmosphere
(Intergovernmental Panel on Climate Change (IPCC), 2007, 2013). In
particular, an unequivocal indication of man's effect on our planet is the
accelerating growth of atmospheric CO2. The principal contribution
(around 88%) to this growth is emissions from fossil fuel burning, with
most of the remainder arising from Land Use Change in the tropics (Le
Quéré et al., 2018). However, the increase in the concentration of at-
mospheric CO2 between 2007 and 2016 is only about half (44%) of the
emissions. Because CO2 is chemically inert in the atmosphere, the
“missing” half of the emissions must flow back into the Earth's surface.
Current estimates (Le Quéré et al., 2018) suggest that around 28% of
the total emissions are taken up by the land and 22% by the oceans
(leaving around 6% unaccounted for), but there are large uncertainties
in these values, especially the land uptake, whose value has usually
been estimated as a residual that ensures the total amount of carbon is
conserved, as expressed in Eq. (1):

= + +U E E –(ΔC U ).land ff lb atmos ocean (1)

Here Eff denotes fossil fuel emissions; Elb is net land biospheric
emissions, comprising both Land Use Change and ecosystem dynamics,
and including alterations to biomass stocks linked to process responses
to climate change, nitrogen deposition and rising atmospheric CO2;
ΔCatmos is the change in atmospheric CO2; and Uland and Uocean are net
average uptake by the land and ocean respectively. In Eq. (1) the
quantities on the right-hand side are typically estimated on an annual
basis or as a decadal average, using a mixture of measurements and
models, to yield Uland. However, in Le Quéré et al. (2018) Uland is es-
timated independently using dynamic global vegetation models. Under
both approaches Uland has the largest uncertainty of any term in Eq. (1),
estimated as 0.8 GtC/yr, which is 26% of its estimated value of 3.0 GtC/
yr (1 GtC= 109 t of C which is equivalent to 3.67× 109 t of CO2).
Moreover, the Land Use Change flux (which is the difference between
emissions from forest loss and uptake of CO2 by forest regrowth) has an
uncertainty of 0.7 GtC/yr, which is 54% of its estimated value of 1.3
GtC/yr. Since the fractional carbon content of dry biomass is around
50% (though with significant inter-species differences [Thomas and
Martin, 2012]), biomass change is a fundamental component in these
two land fluxes, controlling the emissions from forest disturbance and
the uptake of carbon by forest growth (e.g. Pan et al., 2011). This is why

above-ground biomass (AGB) is recognised as an Essential Climate
Variable (ECV) within the Global Climate Observing System (2015,
2017).

Climate change concerns have therefore made it imperative to ob-
tain accurate estimates of biomass and its changes. Unfortunately,
where this information is most needed – the tropics – is where almost
no data have been gathered (Schimel et al., 2015). This is in contrast to
forests in the temperate and southern parts of the boreal zones whose
economic importance has driven the development of extensive national
inventories (although there are vast areas of Alaska, Northern Canada,
and East Eurasia that do not have forest inventories because of their low
economic importance). The tropical forests cover an enormous area
(~18 million km2) and offer huge logistical challenges for ground-
based biomass inventory. They are also crucial in political efforts to
mitigate climate change. In particular, the United Nations Convention
on Climate Change (UNFCCC) through its Reduction of Emissions from
Deforestation and Degradation (REDD+) initiative (UNFCCC, 2016)
aims to use market and financial incentives to transfer funds from the
developed world to the developing countries in the tropical belt to help
them reduce emissions by preservation and management of their forests
(UN-REDD Programme, 2008).

Estimates of biomass losses have focused on deforestation, i.e.
conversion of forest land to other land use, which results in complete
removal of AGB. However, also significant, but missing from most
current estimates, is forest degradation. This is the loss of part of bio-
mass, for instance removal of large stems for timber or of understorey
plants for replacement by cocoa, or through increased fire along forest
edges.

UN-REDD and related programmes have given significant impetus
to the acquisition of more in situ data in developing countries and this
adds to the information available in the periodic reports of the United
Nations (UN) Food and Agriculture Organisation (FAO) (FAO, 2006,
2010, 2016). However national data in many cases have large gaps,
sampling biases, inconsistency of methods, lack spatially explicit in-
formation and contain unrepresentative samples, particularly in de-
veloping countries. As a result, major efforts have been made to for-
mulate more consistent global approaches that combine forest
inventory and satellite data to estimate AGB. Such endeavours have
been greatly hampered by the fact that, up until the launch of the
Global Ecosystem Dynamics Investigation (GEDI) instrument (see
below), there has never been any spaceborne sensor designed to mea-
sure biomass, so space-based estimates of biomass have relied on op-
portunistic methods applied to non-optimal sensors, with the limita-
tions this implies.

In the tropics, the most significant developments have been based
on forest height estimates derived from the Geoscience Laser Altimeter
System (GLAS) onboard the Ice, Cloud and land Elevation Satellite
(ICESat) before its failure in 2009 (Lefsky et al., 2005, Lefsky, 2010).
Combining GLAS data with other EO and environmental datasets and in
situ biomass measurements has led to the production of two pan-tro-
pical biomass maps (Saatchi et al., 2011a; Baccini et al., 2012) at grid
scales of 1 km and 500m respectively; differences between these maps
and differences between the maps and in situ data are discussed in
Mitchard et al. (2013, 2014). Refinements of these maps have been
produced by Avitabile et al. (2016) and Baccini et al. (2017) based on
essentially the same satellite datasets.

For boreal and temperate forests, methods have been developed to
estimate Growing Stock Volume (GSV, defined as the volume of wood
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in all living trees in an area with diameter at breast height above a
given threshold) from very long time series of C-band Envisat satellite
radar data (Santoro et al., 2011). Multiplying these GSV estimates by
wood density allowed Thurner et al. (2014) to estimate the carbon
stock of forests north of 30°N. Reliable GSV estimates using these
methods are only possible at spatial resolutions much coarser than the
underlying radar data: by averaging to 0.5°, the relative RMS difference
between estimated GSV and reference data was consistently found to lie
in the range 20–30% (Santoro et al., 2013). Further refinements to the
methodology and its combination with ALOS PALSAR-2 data are given
in the Final Report of the ESA GlobBiomass project (Schmullius et al.,
2017).

L-band radar offers access to biomass values up to around 100 t/ha
before losing sensitivity (e.g. Mitchard et al., 2009). Under the JAXA
Kyoto and Carbon Initiative, the ALOS L-band PALSAR-1 acquired a
systematic five-year archive of forest data before its failure in April
2011 (Rosenqvist et al., 2014). PALSAR-2 launched in spring 2014 and
has continued this systematic acquisition strategy, but current JAXA
data policy makes scene data very expensive. Annual mosaics are freely
available and have been used to map woodland savanna biomass at
continental scale (Bouvet et al., 2018), but the mosaics combine data
from different times and environmental conditions, so further proces-
sing may be needed to exploit them for biomass estimation (Schmullius
et al., 2017). L-band data will also be acquired by the two Argentinian
Microwave Observation Satellites (SAOCOM), the first of which was
launched on October 8, 2018, with the second due in 2019. Their main
objectives are measurements of soil moisture and monitoring of ha-
zards, such as oil spills and floods, and their value for global forest
observations is not yet clear.

C-band (Sentinel-1, Radarsat) and X-band (Tandem-X) radar in-
struments are in orbit but at these frequencies most of the backscatter is
from the leaves and small twigs, so they have limited value for biomass
estimation except within the context of long time series at C-band
(Santoro et al., 2011) and, for TanDEM-X, when a ground Digital Ter-
rain Model (DTM) is available and the height-to-biomass allometry is
robust (Persson et al., 2017; Askne et al., 2017).

An exciting new development is the deployment on the

International Space Station of the NASA GEDI lidar instrument after its
launch on December 5, 2018 (see Section 10). This mission aims to
sample forest vertical structure across all forests between 51.5° S and
51.5° N, from which estimates of the mean and variance of AGB on a
1 km grid will be derived. In addition, ICESat-2 launched on September
15, 2018; although it is optimised for icesheet, cloud and aerosol ap-
plications, and uses a different technical approach from ICESat-1 based
on photon counting, preliminary results suggest that it can provide
information on both forest height and structure.

It is against this scientific and observational background that
BIOMASS was selected by the European Space Agency (ESA) in 2013 as
its 7th Earth Explorer mission, and the satellite is now under production
by a consortium led by Airbus UK for launch in 2022. The initial mis-
sion concept is described in Le Toan et al. (2011), but there have been
major developments since that time in almost all aspects of the mission:
the measurement and calibration concepts, the scientific context, the
methods to recover biomass from the satellite data, the exploitation of
biomass in carbon cycle and climate modelling, the availability of P-
band airborne campaign data and high quality in situ data, and the
overall capability to estimate biomass from space. It is therefore timely
to provide a comprehensive description of the current mission concept,
and this paper sets out to do so.

After a review of the mission objectives (Section 2), the associated
measurement techniques (polarimetry, polarimetric interferometry
[Pol-InSAR] and SAR tomography [TomoSAR]) are described in Section
3. Pol-InSAR and TomoSAR require the combination of multi-temporal
stacks of data; this imposes very strong conditions on the BIOMASS
orbit pattern, with significant consequences for the production of global
biomass products (Section 4). The orbit pattern also imposes strong
requirements on the ability of the AGB and height inversion techniques,
discussed in Section 5, to adapt to changing environmental conditions.
Section 6 deals with the use of BIOMASS data to estimate severe forest
disturbance, while Section 7 describes the development of the reference
datasets to be used for algorithm calibration and product validation. In
Section 8 we discuss developments in how BIOMASS data can be used
to estimate key carbon cycle and climate variables. Section 9 addresses
a range of secondary objectives. Section 10 provides a view on how

Fig. 1. Global ecological regions of the world (FAO, 2012) with the area affected by Space Objects Tracking Radar (SOTR) stations highlighted in yellow. Only land
areas between 65° South and 85° North are represented (figure reproduced courtesy of Joao Carreiras). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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BIOMASS complements other upcoming missions devoted to forest
structure and biomass, in particular the GEDI lidar and the NASA-ISRO
NISAR L- and S-band mission. Finally, Section 11 discusses how BIO-
MASS will contribute to an overall system for measuring biomass and
its changes in the context of a global carbon cycle management scheme
and presents our general conclusions.

2. BIOMASS mission objectives and data properties

The primary objective of the BIOMASS mission is to determine the
worldwide distribution of forest above-ground biomass (AGB) in order
to reduce the major uncertainties in calculations of carbon stocks and
fluxes associated with the terrestrial biosphere, including carbon fluxes
associated with Land Use Change, forest degradation and forest re-
growth. In doing so, it will provide support for international agreements
such as REDD+ and UN Sustainable Development Goals (#13: climate
action; #15: life on land). In addition it has several secondary objec-
tives, including mapping sub-surface geology, measuring terrain topo-
graphy under dense vegetation and estimating glacier and icesheet
velocities (ESA, 2012).

Although BIOMASS aims at full global coverage, it will at least cover
forested areas between 75° N and 56° S, subject to US Department of
Defense Space Object Tracking Radar (SOTR) restrictions. These re-
strictions do not currently allow BIOMASS to operate within line-of-
sight of the SOTR radars and mainly exclude the North American
continent and Europe (Fig. 1, reproduced from Carreiras et al., 2017).
For secondary applications, if global coverage is not possible, data will
be collected on a best effort basis after covering the primary objectives,
with priorities defined as in ESA (2015).

The BIOMASS data product requirements to meet the primary
mission objectives are (ESA, 2015):

1. Above-ground forest biomass (AGB), defined as the dry weight of
live organic matter above the soil, including stem, stump, branches,
bark, seeds and foliage woody matter per unit area, expressed in t/
ha (FAO, 2009). It does not include dead mass, litter and below-
ground biomass. Biomass maps will be produced with a grid-size of
200m×200m (4 ha).

2. Forest height, defined as upper canopy height according to the H100
standard used in forestry expressed in m, mapped using the same
4 ha grid as for biomass. H100 is defined as the average height of the
100 tallest trees/ha (Philip, 1994).

3. Severe disturbance, defined as an area where an intact patch of
forest has been cleared, expressed as a binary classification of intact
vs deforested or logged areas, with detection of forest loss being
fixed at a given level of statistical significance.

Further properties of these products are defined in Table 1. Note
that:

• The biomass and height products will be produced on a 4 ha grid,
while the disturbance product is at the full resolution of the in-
strument after averaging to 6 looks in azimuth, i.e., around
50m×50m. This is because the large changes in backscatter as-
sociated with forest clearance mean that disturbance can be de-
tected using less precise estimates of the polarimetric covariance
and coherence matrices than are needed for biomass and height
estimation.

• If the true AGB exceeds 50 t/ ha then the RMS error (RMSE) of its
estimate is expected to depend on biomass and be less than AGB/5.
For all values of AGB < 50 t ha−1 the RMSE is stipulated to be
10 t ha−1 or better, though it is likely that changes in ground con-
ditions, such as soil moisture, may cause the RMSE to increase be-
yond this value. Similarly, the RMSE of estimates of forest height
should be<30% of the true forest height for trees higher than 10m.

• Below-ground biomass cannot be measured by BIOMASS (or any
other remote sensing instrument), but can be inferred from above-
ground biomass using allometric relations combined with climate
data (Cairns et al., 1997; Mokany et al., 2006; Thurner et al., 2014).
In particular, Ledo et al. (2018) used an extensive tropical, tempe-
rate and boreal forest dataset to develop a regression, with just tree
size and mean water deficit as predictor variables, which explains
62% of the variance in the root-to-shoot ratio. Therefore,
throughout this paper, ‘biomass’ denotes ‘above-ground biomass’.

3. The BIOMASS system and measurement techniques

BIOMASS will be a fully polarimetric SAR mission operating at P-
band (centre frequency 435MHz) with 6MHz bandwidth, as permitted
by the International Telecommunications Union under a secondary al-
location (the primary allocation is to the SOTR system). The choice of P-
band is mandatory for measuring biomass with a single radar satellite
(necessary for affordability within the ESA cost envelope) for three
main reasons (ESA, 2008, 2012; Le Toan et al., 2011):

1. P-band radiation can penetrate the canopy in all forest biomes and
interacts preferentially with the large woody vegetation elements in
which most of the biomass resides;

2. Backscatter at P-band is more sensitive to biomass than at higher
frequencies (X-, C-, S- and L-bands); lower frequencies (e.g. VHF)
display even greater sensitivity (Fransson et al., 2000) but present
formidable challenges for spaceborne SAR because of ionospheric
effects;

3. P-band displays high temporal coherence between passes separated

Table 1
Summary of primary BIOMASS Level 2 products. Achieving global coverage requires 425 days during the initial Tomographic Phase and 228 days for each cycle of
the subsequent Interferometric Phase. RMSE indicates Root Mean Square Error. “Global” is to be understood as subject to Space Object Tracking Radar restrictions
(Carreiras et al., 2017).

Level 2 product Definition Information requirements

Forest biomass Above-ground biomass expressed in t ha−1. • 200m resolution

• RMSE of 20% or 10 t ha−1 for biomass <50 t ha−1

• 1 biomass map every observation cycle

• global coverage of forested areas
Forest height Upper canopy height defined according to the H100

standard
• 200m resolution

• accuracy required is biome-dependent, but RMSE should be better than 30% for trees higher
than 10m

• 1 height map every observation cycle

• global coverage of forested areas
Severe disturbance Map product showing areas of forest clearance • 50m resolution

• detection at a specified level of significance

• 1 map every observation cycle

• global coverage of forested areas
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by several weeks, even in dense forest (Ho Tong Minh et al., 2012),
allowing the use of Pol-InSAR to estimate forest height and retrieval
of forest vertical structure using tomography.

Here (1) is the crucial physical condition: it underlies the sensitivity
in point (2) and, through the relative positional stability of the large
woody elements, combined with the greater phase tolerance at longer
wavelengths, permits the long-term coherence needed for (3).

The satellite will carry a 12m diameter reflector antenna, yielding a
single-look azimuth resolution of ~7.9 m. A polarimetric covariance
product will also be generated by averaging 6 looks in azimuth, giving
pixels with azimuth resolution ~50m. Because of the allotted 6MHz
bandwidth, the single-look slant range resolution will be 25m,
equivalent to a ground range resolution of 59.2 m at an incidence angle
of 25°. Roll manoeuvres will allow the satellite to successively generate
three sub-swaths of width 54.32, 54.41 and 46.06 km, giving a range of
incidence angles across the combined swath from 23° to 33.9°. It will be
in a sun-synchronous orbit with a near dawn-dusk (06:00 ± 15min)
equatorial crossing time; the Local Time of the Ascending Node (LTAN)
will be on the dawn-side, the system will be left-looking and the orbit
inclination will be 98°, with the highest latitude in the northern
hemisphere attained on the night-side. This orbit is chosen to avoid the
severe scintillations that occur in the post-sunset equatorial ionosphere
(Rogers et al., 2013). Observations will be made during both the as-
cending and descending passes.

BIOMASS displays major advances compared to all previous SAR
missions in its use of three complementary technologies to provide in-
formation on forest properties: polarimetry (PolSAR), Pol-InSAR and
TomoSAR. All acquisitions will be fully polarimetric, i.e. the amplitude
and phase of the HH, VV, HV & VH channels will be measured (HV
indicates horizontal polarization on transmit and vertical polarization
on receive, with the other channels being similarly defined). This is in
itself an advance, but BIOMASS will also be the first mission to sys-
tematically employ the Pol-InSAR technique to measure forest height.
Even more innovative is its tomographic capability, which will allow
three-dimensional imaging of forests.

The Tomographic Phase will immediately follow the initial 3-month
Commissioning Phase, and will provide tomographic mapping of all
imaged forest areas. Global coverage requires 425 days (~14months)
in order to provide 7 passes, each separated by 3 days, for each tomo-
graphic acquisition. The remainder of the 5-year mission will be taken
up by the Interferometric Phase, during which 3 passes, each separated
by 3 days, will be combined in 3-baseline Pol-InSAR. Each cycle of the
Interferometric Phase will require 228 days (~7months) to provide
global coverage. Note that these techniques are nested: the data gath-
ered for tomography will yield multiple Pol-InSAR and PolSAR mea-
surements, and each Pol-InSAR image triplet also provides three
PolSAR images.

Associated with the highly innovative measurement concepts of the
mission are completely new challenges in external calibration arising
from the orbital pattern needed for the tomographic and Pol-InSAR
phases of the mission (Section 4), the strong effects of the ionosphere at
P-band, and the lack of pre-existing P-band data except over very lim-
ited parts of the globe. Together these create problems that can only be
solved by combining infrequent visits to instrumented calibration sites
with systematic exploitation of the properties of distributed targets and
targets of opportunity. An overall approach to addressing these pro-
blems, including ionospheric correction, radiometric and polarimetric
calibration, and providing the required geolocation accuracy is de-
scribed in Quegan et al. (2018).

4. The BIOMASS orbit and its implications

In the Tomographic Phase, BIOMASS needs to be placed in a very
precise repeat orbit in which a given scene is imaged 7 times with 3-day
spacing. These acquisitions will be from slightly different positions

separated by 15% of the critical baseline (i.e. 0.823 km) at the equator,
which is necessary to preserve coherence. In this orbit, it takes 18 days
to acquire the 7 images needed for each of the 3 sub-swaths, so that
tomography over the full swath (comprising the 3 sub-swaths) occupies
a period of 60 days. Once this has been achieved, a drift manœuvre will
raise the satellite in altitude and then return it to its nominal altitude of
671.9 km. This allows the Earth to rotate below the satellite, and the
next tomographic acquisition period covers a new swath that is ad-
jacent to the previous one. Repeating this sequence 6+ 1/3 times
yields global coverage and takes 425 days (the extra third corresponds
to coverage in swath 1). The orbit pattern for the Interferometric Phase
uses essentially the same concept, but because only 3 images are needed
to form the Pol-InSAR product, imaging a full swath requires only
24 days, and global coverage takes 228 days.

These properties of the BIOMASS orbit pattern, driven by the re-
quirement for global coverage using coherent imaging techniques, have
profound implications for biomass retrieval in time and space.
Acquisitions in adjacent swaths are separated by 2months in the
Tomographic Phase and by a little less than a month in each cycle of the
Interferometric Phase. Hence there are likely to be significant changes
in environmental conditions between different swaths that make up the
global coverage. In addition, because each cycle of the Interferometric
Phase takes 7months, the acquisitions become steadily more out of
phase with annual geophysical cycles, such as the Amazonian and West
African inundation cycles. This means that the BIOMASS inversion al-
gorithms have to be sufficiently robust that they are negligibly affected
by environmental changes. Incomplete compensation for such changes
will manifest themselves as systematic differences between adjacent
swaths or repeat swaths gathered in different cycles. As an example,
boreal forests freeze during winter and their backscatter significantly
decreases, so the winter season will most likely not be useful for bio-
mass estimation.

5. Forest AGB and height estimation techniques

BIOMASS will exploit properties of all three SAR techniques,
PolSAR, Pol-InSAR and TomoSAR, to estimate biomass, while both Pol-
InSAR and TomoSAR will provide estimates of forest height. However,
because BIOMASS will be the first spaceborne P-band SAR, the ex-
perimental data needed to support the development and testing of these
techniques is based on limited airborne and ground-based measure-
ments. Six major ESA airborne campaigns were carried out (BioSAR-1,
−2 and− 3 in the boreal zone, and three in tropical ecosystems:
TropiSAR in French Guiana, AfriSAR in Gabon and Indrex-2 in
Indonesia) using the E-SAR and F-SAR (DLR, Germany) and SETHI
(ONERA, France) P-band SARs (see Table 2, which includes the objec-
tives of the campaigns and essential properties of the test-sites). These
campaigns have provided the most accurate and complete set of P-band
SAR (PolSAR, Pol-InSAR and TomoSAR) and associated in situ data
currently available over boreal and tropical forests. In addition, long-
term continuous P-band tower-based measurements were made in
French Guiana (Tropiscat), Ghana (Afriscat) and Sweden (Borealscat) to
investigate diurnal and seasonal variations in backscatter and temporal
coherence. Earlier P-band datasets from the NASA AirSAR system were
also helpful, especially tropical forest data from Costa Rica, to extend
the range of tropical biomass values (Saatchi et al., 2011b), and NASA
was heavily involved in the AfriSAR campaign, providing lidar cov-
erage of the AfriSAR test-sites (Labrière et al., 2018). No specific ESA
campaigns were conducted in temperate forests, but substantial
amounts of tomographic data are available for such forests from ex-
perimental campaigns carried out by DLR.

5.1. Estimating AGB

Some key findings from these campaigns are illustrated in Fig. 2,
where the P-band HV backscatter (given as γ0 in dB) is plotted against
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the biomass of reference plots from a boreal site (Remningstorp,
Sweden) and two tropical sites (Paracou, French Guiana and La Selva,
Costa Rica). The data are not corrected for topographic or soil moisture
effects, and the lines correspond to linear regression fits to the log-log
form of the data. The sensitivity of backscatter to biomass is clear across
the whole range of biomass covered, though with large dispersion in the
boreal forest and the high biomass tropical forest in French Guiana.
Also clear is that, for a given biomass, the HV backscatter is con-
siderably larger in boreal than tropical forest. This corrects an error in
Fig. 2 of Le Toan et al. (2011) where mean backscatter differences
between the boreal and tropical data were ascribed to calibration errors
and removed by shifting the data. The careful calibration of the datasets
shown in Fig. 2 indicates that the difference is real and that different
physical and biological factors (such as forest structure) are at play in
the different forest types.

The regression lines indicate that in natural units the HV backscatter
is approximately related to biomass, W, by a power law relationship,
i.e.

=γ cWHV
p0 (2)

where c and p are parameters. Analysis in Schlund et al. (2018) in-
dicates such relationships are found for the full set of available P-band
SAR datasets that are supported by adequate in situ data except where
there is strong topography. Although the model coefficients (and their
coefficients of determination) vary across datasets, they are not sig-
nificantly different when similar AGB ranges are considered.

Despite this strong regularity in the relation between HV back-
scatter and biomass, exploiting it to estimate biomass faces a number of
problems:

a. Dispersion in the data. For the boreal data in Fig. 2, major factors
causing dispersion in the backscatter values are slope and soil
moisture variations. The Krycklan campaign over boreal forest in
Sweden (Table 2) clearly shows that topography severely affects the
power law relationship given by Eq. (2) (Soja et al., 2013). This is
particularly obvious in Krycklan because in this region most of the
highest biomass stands are located in sloping areas. As demonstrated
in Soja et al. (2013), however, adding terms involving the γHH0/γVV0
ratio and slope to the regression significantly reduces the dispersion,
at the expense of including two extra parameters. Note that the HH/
VV ratio was included because of its lower sensitivity to soil
moisture, and that the regression inferred from the Krycklan site in
N. Sweden could be successfully transferred to Remningstorp
720 km away in S. Sweden. The associated relative RMSEs in AGB
using the combined BioSAR-1 and -2 data were 27% (35 t/ha) or
greater at Krycklan and 22% (40 t/ha) or greater at Remningstorp.
However, more recent unpublished analysis including the BIOSAR-3
data indicates that further coefficients are needed to achieve ade-
quate accuracy. Another study for Remningstorp (Sandberg et al.,
2014) found that AGB change could be estimated more accurately
than AGB itself: analysis based on 2007 and 2010 data gave a RMSE
of 20 t/ha in the estimated biomass change, i.e. roughly half the
RMSEs of the individual AGB estimates. The algorithm used was
based on finding areas of little or no change using the HH/VV ratio
and applying polarization-dependent correction factors to reduce
the effect of moisture variation.
Unlike in Sweden, very little environmental change occurred during
the TropiSAR campaign in French Guiana, and the major effect af-
fecting the relation given by Eq. (2) was topography, which greatly
increased the dispersion. Methods to reduce this were based on ro-
tating the spatial axes and normalization to account for the variation
in the volume and double bounce backscatter with incidence angle
(Villard and Le Toan, 2015). This allowed the sensitivity of the HV
backscatter to biomass to be recovered, and AGB could then be es-
timated from the polarimetric data with relative RMSE<20%.

Ta
bl
e
2

C
am

pa
ig
n
da

ta
us
ed

in
de

ve
lo
pi
ng

an
d
te
st
in
g
BI
O
M
A
SS

re
tr
ie
va

l
al
go

ri
th
m
s.

C
am

pa
ig
n

O
bj
ec
ti
ve

s
Te

st
si
te
s

Ti
m
e

Fo
re
st

co
nd

it
io
ns

Tr
op

iS
A
R
,S

ET
H
I
(D

ub
oi
s-
Fe

rn
an

de
z
et

al
.,
20

12
)

Bi
om

as
s
es
ti
m
at
io
n
in

tr
op

ic
al

fo
re
st
;t
em

po
ra
l

st
ab

ili
ty

of
co

he
re
nc

e
Pa

ra
co

u
&

N
ou

ra
gu

es
,
Fr
en

ch
G
ui
an

a
A
ug

.2
00

9
Tr
op

ic
al

ra
in

fo
re
st
,A

G
B
30

0–
50

0
t/
ha

,l
ow

la
nd

an
d

hi
lly

te
rr
ai
n

In
dr
ex
-2
,E

-S
A
R
(H

aj
ns
ek

et
al
.,
20

09
a)
;n

ot
to
m
og

ra
ph

ic
H
ei
gh

t
re
tr
ie
va

l
in

tr
op

ic
al

fo
re
st
;m

ea
su
re
m
en

t
of

re
pe

at
-p
as
s
te
m
po

ra
l
de

co
rr
el
at
io
n

Su
ng

ai
-W

ai
&

M
aw

as
,B

or
ne

o,
In
do

ne
si
a

N
ov

.2
00

4
Tr
op

ic
al

ra
in

fo
re
st
.

Su
ng

ai
-W

ai
:
lo
w
la
nd

,A
G
B
≤

60
0
t/
ha

;
M
aw

as
:p

ea
t

sw
am

p,
A
G
B
≤

20
0
t/
ha

Tr
op

is
ca
t:

G
ro
un

d-
ba

se
d
hi
gh

te
m
po

ra
l
re
so
lu
ti
on

m
ea
su
re
m
en

ts
(K

ol
ec
k
et

al
.,
20

12
)

M
ea
su
re
m
en

t
of

lo
ng

-t
er
m

te
m
po

ra
l
co

he
re
nc

e
an

d
te
m
po

ra
l
va

ri
at
io
n
of

ba
ck
sc
at
te
r
in

tr
op

ic
al

fo
re
st

Pa
ra
co

u,
Fr
en

ch
G
ui
an

a
A
ug

.2
01

1
-
D
ec
.2

01
2

Tr
op

ic
al

ra
in

fo
re
st
,A

G
B
ca
.4

00
t/
ha

Bi
oS

A
R
-1
,
E-
SA

R
(H

aj
ns
ek

et
al
.,
20

08
)

Bi
om

as
s
es
ti
m
at
io
n
an

d
m
ea
su
re
m
en

t
of

m
ul
ti
-

m
on

th
te
m
po

ra
l
de

co
rr
el
at
io
n

R
em

ni
ng

st
or
p,

so
ut
he

rn
Sw

ed
en

M
ar
.-

M
ay

20
07

H
em

i-
bo

re
al

fo
re
st
,l
ow

to
po

gr
ap

hy
,A

G
B
≤

30
0
t/
ha

Bi
oS

A
R
-2
,
E-
SA

R
(H

aj
ns
ek

et
al
.,
20

09
b)

To
po

gr
ap

hi
c
in
fl
ue

nc
e
on

bi
om

as
s
es
ti
m
at
io
n

K
ry
ck
la
n,

no
rt
he

rn
Sw

ed
en

O
ct
.2

00
8

Bo
re
al

fo
re
st
,h

ill
y,

A
G
B
≤

30
0
t/
ha

Bi
oS

A
R
-3
,
E-
SA

R
(U

la
nd

er
et

al
.,
20

11
a,

20
11

b)
Fo

re
st

ch
an

ge
an

d
m
ul
ti
-y
ea
r
co

he
re
nc

e
re
la
ti
ve

to
Bi
oS

A
R
-1

R
em

ni
ng

st
or
p,

so
ut
he

rn
Sw

ed
en

Se
pt
.2

01
0

H
em

i-
bo

re
al

fo
re
st
,l
ow

to
po

gr
ap

hy
,A

G
B
≤

40
0
t/
ha

(m
or
e
hi
gh

bi
om

as
s
st
an

ds
th
an

in
BI
O
SA

R
-1
)

A
fr
iS
A
R
,S

ET
H
I
an

d
F-
SA

R
Bi
om

as
s
es
ti
m
at
io
n
in

tr
op

ic
al

fo
re
st
;t
em

po
ra
l

st
ab

ili
ty

of
co

he
re
nc

e
Si
te
s
at

Lo
pé

,M
on

da
h,

M
ab

ou
ni
e

an
d
R
ab

i,
G
ab

on
Ju

ly
20

15
(S
ET

H
I)

Fe
b.

20
16

(F
-S
A
R
)

Tr
op

ic
al

fo
re
st

an
d
sa
va

nn
ah

,A
G
B
fr
om

50
to

50
0
t/

ha
A
fr
is
ca
t:
G
ro
un

d-
ba

se
d
hi
gh

te
m
po

ra
lr
es
ol
ut
io
n
m
ea
su
re
m
en

ts
M
ea
su
re
m
en

t
of

lo
ng

-t
er
m

te
m
po

ra
l
co

he
re
nc

e
an

d
te
m
po

ra
l
va

ri
at
io
n
of

ba
ck
sc
at
te
r
in

tr
op

ic
al

fo
re
st

A
nk

as
a,

G
ha

na
Ju

ly
20

15
–J
ul
y
20

16
Tr
op

ic
al

fo
re
st
,l
ow

to
po

gr
ap

hy
,
A
G
B
fr
om

10
0
to

30
0
t/
ha

Bo
re
al
sc
at
:
G
ro
un

d-
ba

se
d
hi
gh

te
m
po

ra
l
re
so
lu
ti
on

m
ea
su
re
m
en

ts
(U

la
nd

er
et

al
.,
20

18
;M

on
te
it
h
an

d
U
la
nd

er
,2

01
8)

Ti
m
e
se
ri
es

of
ba

ck
sc
at
te
r,

to
m
og

ra
ph

y,
co

he
re
nc

e
an

d
en

vi
ro
nm

en
ta
l
pa

ra
m
et
er
s
in

bo
re
al

fo
re
st
.

R
em

ni
ng

st
or
p,

so
ut
he

rn
Sw

ed
en

D
ec
.2

01
6,

on
go

in
g

H
em

i-
bo

re
al

fo
re
st
,s

pr
uc

e-
do

m
in
at
ed

st
an

d,
lo
w

to
po

gr
ap

hy
,
A
G
B
=

25
0
t/
ha

S. Quegan, et al. Remote Sensing of Environment 227 (2019) 44–60

49



However, because the approach is based on regression and there was
little temporal change in conditions during the campaign, it contains
no provision for dealing with large seasonal variations in back-
scatter like those observed in the Tropiscat data (Bai et al., 2018)
and expected in BIOMASS data.

b. Algorithm training. Regression methods need training data, but in
many parts of the world, and especially in the tropics, there are very
few high quality permanent in situ sampling plots, almost all funded
under science grants. Significant efforts are being made by ESA, in
collaboration with NASA, to work with and extend the existing in
situ networks in order to establish a set of well-documented re-
ference sites that can be using for training and validation. Part of the
challenge in doing so is to ensure that the set of reference sites is
large enough and representative enough to capture the major var-
iations in forest types and conditions.

c. Physical explanation. Despite its remarkable generality, as de-
monstrated in Schlund et al. (2018), the physical basis of Eq. (2) is
not well-understood except in certain limiting cases (see below).
Hence it is essentially empirical and at present we cannot in general
attach meaningful physical properties to the fitting parameters or
derive them from scattering models. In particular, it has no clear
links to well-known decompositions of polarimetric backscatter into
physical mechanisms (e.g. Freeman and Durden (1998); Cloude and
Pottier (1996)). In addition, in boreal forests this relation depends
on both total AGB and tree number density, so that unambiguous
estimates of AGB require information on number density or use of
height information combined with height- biomass allometric rela-
tions (Smith-Jonforsen et al., 2007)

To get round these problems with the regression-based approaches,
the current emphasis is on estimating biomass using a model-based
approach that brings together three key factors: the capabilities of the
BIOMASS system, the observed properties of the vertical distribution of
forest biomass and our knowledge about the physics of radar-canopy
interactions as embodied in scattering models.

Its starting point is a simplified scattering model that describes the
backscattering coefficient in each of the HH, HV and VV channels as an
incoherent sum of volume, surface and double-bounce scattering
(Truong-Loi et al., 2015). The model involves 6 real parameters per
polarization, which are estimated using a combination of a scattering
model and reference data. Biomass, soil roughness and soil moisture are
then treated as variables to be estimated from the data. Initial analysis
found that this model was too complex and the associated parameter

estimation was too unstable for this to be a viable approach for BIO-
MASS. However, a crucial technical development was to demonstrate
that both tomographic and Pol-InSAR data can be used to cancel out the
terms involving the ground (surface scatter and double bounce) and
isolate the volume scattering term (Mariotti d'Alessandro et al., 2013;
Mariotti d'Alessandro et al., 2018). In the Truong-Loi et al. (2015)
formulation, this term can be written as

⎜ ⎟= ⎛

⎝
⎜ − ⎛

⎝
− ⎞

⎠

⎞

⎠
⎟σ A W θ

B W
θ

cos 1 exp
cospq

v
pq

α pq
β

pq
pq

(3)

where Apq, Bpq, αpq and βpq are coefficients for polarization configura-
tion pq, W is AGB, and θ is the local incidence angle. The coefficients αpq
and βpq relate to forest structure, Bpq > 0 is an extinction coefficient
and Apq > 0 is a scaling factor.

Assuming that Apq, Bpq, αpq and βpq are space-invariant at a certain
scale, these parameters and AGB can be estimated simultaneously from
the measured values of σpqv in the three polarizations, pq=HH, HV and
VV, using a non-linear optimization scheme (Soja et al., 2017, 2018).
However, in model (3), the two biomass-dependent factors, ApqWαpq and

⎜ ⎟− ⎛
⎝

− ⎞
⎠

1 exp B W
cos θ

pq
βpq

, both increase with increasing AGB for realistic

parameters (αpq > 0 and βpq > 0), so interactions between αpq, Bpq and
βpq render the inversion difficult. This problem can be mitigated by
using two special cases of the model, both of which lead to a power law
expression as in Eq. (2). For the low-attenuation case, i.e., BpqWβpq ≪ 1,
Eq. (3) can be simplified using a series expansion to:

= ′σ A Wpq
v p (4)

where p= αpq+ βpq and A′= ApqBpq, and in the high-attenuation case,
i.e., BpqWβpq ≫ 1, Eq. (3) can be simplified to:

= ′σ A W θcospq
v p (5)

where p= αpq and A′=Apq. In both cases, A′, W and p can then be
estimated using the scheme proposed in Soja et al. (2017, 2018).

Note that there is still an inherent scaling ambiguity since the
scheme cannot distinguish the unbiased estimate of AGB, W0, from any
function of the form aW0

b, where a and b are calibration constants.
Hence reference data are needed, but these data do not need to cover a
wide range of backscatter, slope and incidence angle conditions, as
would be required if any of the models (3)–(5) were to be trained di-
rectly. One complication is that the temporal and spatial variations of a
and b are are currently unknown and further work is needed to quantity
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Fig. 2. P-band backscatter at HV polarization (γHV0) over
tropical and boreal forests against the biomass of in situ re-
ference plots. Data from Paracou, French Guiana, were ac-
quired by the SETHI SAR system in 2011 (Dubois-Fernandez
et al., 2012), those from La Selva, Costa Rica, in 2004 by the
AIRSAR system (Antonarakis et al., 2011) and those from
Remningstorp, Sweden, by the E-SAR system in 2007
(Sandberg et al., 2011).
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them. Further refinements may also be needed to reduce residual effects
from moisture variations by, for example, use of the VV/HH ratio in
boreal forests as discussed above.

The effectiveness of this approach is illustrated by Fig. 3, which
plots values of AGB estimated with this scheme against AGB values
estimated from in situ and airborne laser scanning data for a set of
200m×200m regions of interest (ROIs). The airborne P-band data
used are from the AfriSAR campaign and were filtered to 6MHz to
match the BIOMASS bandwidth. The estimates are highly correlated
with the reference data (r=0.97), exhibit only a small amount of bias
across the whole biomass range, and give a RMSE of 41 t/ha (16% of
the average biomass).

Further confirmation of the importance of isolating the volume
backscatter by using the full power of tomography is from the TropiSAR
tropical forest campaign, where the tomographic intensity (in dB)
measured at 30m above the ground (representing scattering from ca-
nopy elements between ca. 17.5 m and 42.5 m, given the roughly 25m
vertical resolution of tomographic imaging) was found to be highly
correlated with AGB (Ho Tong Minh et al., 2014, 2016). The observed
sensitivity is about 50 tons/ha per dB, and the correlation coefficient is
about 0.84 at the scale of 1 ha. This striking result has been replicated
in the forest sites investigated during the AfriSAR campaign (Fig. 4),
and suggests that the backscatter from the forest layer centred 30m
above ground should be strongly correlated with total AGB in the case
of dense tropical forests.

Importantly, this finding is consistent with the TROLL ecological
model (Chave, 1999), which predicts that for dense tropical forests the
fraction of biomass contained between 20m and 40m accounts for
about 35% to 40% of the total AGB, and that this relation is stable over
a large range of AGB values (Ho Tong Minh et al., 2014). Another
element in support of the ecological relevance of the 30m layer is
provided by two recent studies of tropical forests, which observed that:
a) correlation between AGB and the area occupied at different heights
by large trees (as derived from lidar) is maximal at a height of about
30m (Meyer et al., 2018); b) about 35% of the total volume tends to be
concentrated at approximately 24–40m above the ground (Tang,
2018).

However, tomographic data will only be available in the first phase
of the mission. In addition, exploiting the relation between AGB and the
30m tomographic layer requires knowledge of how the regression
coefficients vary in time and space, hence substantial amounts of
training data. In contrast, ground cancellation can be carried out with
both tomographic and Pol-InSAR data (so throughout the mission). This
allows the volume scattering term (Eq. (3)) to be isolated and hence
AGB to be estimated using the scheme described in Soja et al. (2018),
which makes much less demand on the availability of reference data.

The value of tomography for estimating AGB in boreal and tempe-
rate forests is less clear, since (a) these forests in general have smaller
heights than in the tropics (so it is more problematical to isolate the
signal from a canopy layer without corruption by a ground contribu-
tion, given the roughly 25m vertical resolution of the tomographic
product from BIOMASS), and (b) the double bounce mechanism ap-
pears to be important in recovering the AGB of boreal forests. Hence
ground cancellation (which also cancels double bounce scattering, since
this appears at ground level in the tomographic image) may noto help
biomass estimation in such forests, and the preferred algorithm for
BIOMASS in these cases is still not fixed. Recent results indicate that
ground cancellation improves results in Krycklan, but not in
Remningstorp, most likely because it suppresses direct ground back-
scattering, which is unrelated to AGB but is of higher relative im-
portance in Krycklan due to the pronounced topography.

5.2. Estimating forest height

Forest height estimates will be available throughout the
Tomographic and Interferometric Phases, in the latter case using

polarimetric interferometric (Pol-InSAR) techniques (Cloude and
Papathanassiou, 1998, 2003; Papathanassiou and Cloude, 2001) ap-
plied to three polarimetric acquisitions performed in a 3-day repeat-
pass interferometric mode. The use of Pol-InSAR to estimate forest
height has been demonstrated at frequencies from X- to P-band for a
variety of temperate, boreal and tropical sites, with widely different
stand and terrain conditions (Praks et al., 2007; Kugler et al., 2014;
Hajnsek et al., 2009a, 2009b; Garestier et al., 2008), and several
dedicated studies have addressed its likely performance and limitations
when applied to BIOMASS data.

Estimation of forest height from Pol-InSAR requires a model that
relates forest height to the Pol-InSAR measurements (i.e. primarily to
the interferometric coherence at different polarisations and for different
spatial baselines) together with a methodology to invert the established
model. Most of the established inversion algorithms use the two-layer
Random Volume over Ground (RVoG) model to relate forest height to
interferometric coherence (Treuhaft et al., 1996). This relies on two
assumptions: 1) all polarizations “see” (up to a scalar scaling factor) the
same vertical distribution of scatterers in the vegetation (volume) layer;
2) the ground layer is impenetrable, i.e. for all polarizations, the re-
flectivity of the ground scattering component is given by a Dirac delta
function modulated by a polarimetrically dependent amplitude. The
RVoG model has been extensively validated and its strong and weak
points are well understood. Use of this model to obtain a forest height
map is illustrated in Fig. 5 which is derived by inverting P-band Pol-
InSAR data acquired during the AfriSAR campaign in February 2017
over the Pongara National Park, Gabon. This site is covered mainly by
mangrove forests, which are among the tallest mangrove forests in the
world, towering up to 60m.

The main challenge for BIOMASS is therefore the development of an
inversion formulation able to provide unique, unbiased and robust
height estimates, and which accounts for: 1) the scattering character-
istics at P-band, since the limited attenuation by the forest canopy
means that a ground scattering component is present in all polarisa-
tions; 2) the constraints imposed by the BIOMASS configuration, both
the 6MHz bandwidth and the fact that some temporal decorrelation is
inevitable in the repeat-pass mode (Lee et al., 2013; Kugler et al., 2015).
To meet this challenge a flexible multi-baseline inversion scheme has
been developed that allows the inversion of the RVoG model by in-
cluding: 1) a polarimetric three-dimensional ground scattering com-
ponent; 2) a vertical distribution of volume scattering that can adapt to
high (tropical) and low (boreal) attenuation scenarios; 3) a scalar

Fig. 3. Estimated AGB using the approach described in the text against AGB
estimated from in situ and airborne laser scanning at the La Lopé site in Gabon
during the AfriSAR campaign. The running average given by the blue line in-
dicates only a small positive bias across the whole range of AGB. ROI denotes
Region of Interest. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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temporal decorrelation that accounts for wind-induced temporal dec-
orrelation of the vegetation layer. The inversion can then be performed
using the three polarimetric acquisitions in the Interferometric Phase,
allowing global forest height maps to be produced every 7months.

The main limitations in generating the forest height product arise
not from the inversion methodology but from the 6MHz bandwidth,
which constrains the generation of large baselines as well as the spatial
resolution of the data, and the low frequency, which reduces the sen-
sitivity to forest height in certain sparse forest conditions. On the other
hand, the low frequency will provide high temporal stability over the 3-
day repeat period of the Interferometric Phase, which is necessary to
establish uniqueness and optimum conditioning of the inversion pro-
blem.

An alternative approach to estimating forest height is by tracing the
upper envelope of the observed tomographic intensities, as reported in
Tebaldini and Rocca (2012) and Ho Tong Minh et al. (2016) for boreal
and tropical forests, respectively. This has the advantage of being less
computationally expensive than model-based inversion, and it can be
applied in the absence of a specific model of the forest vertical

structure. Importantly, it has been demonstrated using synthetic 6MHz
data simulating BIOMASS acquisitions over boreal forests (Tebaldini
and Rocca, 2012). However, this approach will only be possible during
the Tomographic Phase of the mission.

6. Severe forest disturbance

The BIOMASS disturbance product aims to detect high-intensity
forest disturbance (effectively forest clearance) occurring between sa-
tellite revisit times. This is a natural extra use of the data gathered for
biomass and height estimation, rather than a driver for the BIOMASS
mission, and will contribute to the overall capability to measure forest
loss from space using optical (e.g., Hansen et al., 2013) and radar
sensors (e.g., the pair of Sentinel-1C-band radar satellites). Changes in
the polarimetric covariance matrix caused by deforestation are rela-
tively large; for example, Fig. 1 indicates that γhv0 changes by 5 dB as
biomass decreases from 500 t ha−1 to nearly zero, while a change in
AGB from 100 to 200 t ha−1 causes γhv0 to change by only ~1 dB. Hence
change detection is less affected by the statistical variability inherent in
the radar signal, allowing the disturbance product to be produced at a
spatial resolution of ~50m, instead of 200m, as for the biomass and
height products.

The method proposed for detecting disturbance is firmly rooted in
the statistical properties of the 6-look polarimetric covariance data and
uses a likelihood ratio (Conradsen et al., 2016) to test, at a given level
of statistical significance, whether change has occurred relative to
previous acquisitions in each new polarimetric acquisition over forest.
Note that this approach does not specify the detection probability,
which would require an explicit form of the multi-variate probability
distribution function associated with disturbed forest. This would be
very difficult to characterise in any general sense because change may
affect the covariance matrix in many different ways. Instead it provides
a quantitative way to determine how sure we are that change has oc-
curred; in this respect it is closely related to the Constant False Alarm
Rate approach to target detection (e.g. Scharf, 1991).

A current unknown in this approach is to what extent changes in the
covariance matrix of undisturbed forest caused by environmental ef-
fects, such as changing soil moisture due to rainfall events, will increase
the false detection rate. A further issue is that detections are only sought
in forest pixels, so an accurate initial forest map is required, preferably
estimated from the radar data themselves but possibly from some other
source; this will be progressively updated after each new acquisition.

Some insight into the performance of this approach can be gained

Fig. 4. Plot of HV backscatter intensity at height 30m above the ground
measured by tomography against in situ AGB in 1 ha plots at tropical forest sites
investigated during the TropiSAR (Paracou and Nouragues) and AfriSAR (Lopé,
Rabi, Mondah) campaigns.

Fig. 5. Forest height map obtained from inverting P-band Pol-InSAR data acquired over the Pongara National Park, Gabon, in the framework of the AfriSAR
campaign in February 2017.
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using multi-temporal polarimetric data from PALSAR-2. Fig. 6 shows at
the top Pauli format slant range representations of a pair of images
gathered on 8 August 2014 and 8 August 2015 (so in this case the time
series has length 2), below left the detection of change at 99% sig-
nificance and below right the pixels at which change occurred marked
in red on the image from 2014 (with no forest mask applied). It can be
seen that the areas where change was detected occur in the non-forest
regions, while detections in the forest regions occur as isolated pixels
consistent with the 1% false alarm rate implied by the level of sig-
nificance of the test.

7. In situ and lidar reference biomass data

Although the model-based inversion proposed for estimating bio-
mass (Section 5.1) minimises the need for in situ reference data, such
data are critical for algorithm development and testing, investigation of
regression-based approaches, and product calibration and validation.
The BIOMASS mission faces three major challenges in providing these
supporting data: (i) the key region where reference data are needed is
the tropics, but high quality biomass data are available at only a very
limited number of tropical sites; (ii) biomass will be estimated at a scale
of 4 ha (200m by 200m pixels) but most plot data are available at
scales of 1 ha or less and the geographical locations of the plots is often
not known to high accuracy; (iii) because of SOTR restrictions (Section
2), reference sites in the temperate and boreal zones will need to be

outside N America and Europe.
ESA are addressing challenge (i) and (ii) by working with existing

networks to develop suitable extensive in situ reference data before
launch through the Forest Observation System (http://forest-
observation-system.net/). A further encouraging development is the
ESA-NASA initiative to collaborate in developing the in situ data re-
quirements for GEDI, BIOMASS and NISAR. Co-operation along these
lines is already in evidence from joint contributions to the AfriSAR
campaign by ESA and NASA. As regards (iii), for the temperate zone,
southern hemisphere sites, e.g. in Tasmania, would be suitable, while
Siberia is the most desirable region for the boreal zone. However,
concrete plans to gather in situ data in these regions are not currently in
place.

An important complement to in situ data that helps to address
challenge (ii) is airborne lidar data. This can provide a forest height
map and information on canopy structure which, when combined with
field data, allows biomass to be estimated. Lidar data offer many ad-
vantages, including:

• A scanning lidar provides a relatively fine scale and accurate map of
biomass, which can be aggregated to the 4 ha resolution cell of
BIOMASS (this will allow the effects of variability in biomass at sub-
resolution size to be assessed). Precision at this scale is typically
below 10% and the vast majority of relevant studies indicate that
the associated pan-tropical allometry (Chave et al., 2014) has

140808 150807

Detection of Change: P>99% 140808 + Change (red mask)

Fig. 6. (Top) Pair of repeat-pass PALSAR-2 images acquired on 8 August 2014 and 7 August 2015 displayed in Pauli image format (red=HH+VV; blue=HH - VV;
green= 2HV) and slant range geometry. (Bottom left) Detection of change at 99% significance level; changed pixels are marked as black. (Bottom right) Image from
8 August 2014 with changed pixels marked as red.
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negligible bias.

• Lidar mapping can cover landscapes with a wide range of biomass
levels and different forest conditions (degraded, regrowth, selec-
tively logged, etc.).

• Forest height with fine resolution (around 1m) can be estimated at
the same time as biomass.

Hence the validation strategy for BIOMASS will involve a combi-
nation of in situ reference forest plots and lidar-derived biomass/height
maps.

8. Exploiting BIOMASS data in carbon cycle and climate analysis

Although the primary objectives of BIOMASS are to reduce the
major uncertainties in carbon fluxes linked to Land Use Change, forest
degradation and regrowth and to provide support for international
agreements (UNFCCC & REDD+), its products will also play a key role
in advancing fundamental knowledge of forest ecology and bio-
geochemistry. For example, BIOMASS data will help in constraining
critical carbon cycle parameters, initialising and testing the land com-
ponent of carbon cycle and Earth System models (ESMs), and quanti-
fying the forest disturbance regime.

Differences between ESM forecasts of the carbon cycle are currently
significant, and lead to major uncertainties in predictions (Exbrayat
et al., 2018a, 2018b). These differences have been linked to variations
in the internal processing of carbon, particularly in the large pools in
biomass and soil organic matter (Friend et al., 2014). Linking biomass
mapping to estimates of net primary production (NPP) provides a
constraint on the turnover rate of the biomass pool, a critical model
diagnostic (Carvalhais et al., 2014; Thurner et al., 2014). A recent study
(Thurner et al., 2017) found observed boreal and temperate forest
carbon turnover rates up to 80% greater than estimates from global
vegetation models involved in the Inter-Sectoral Impact Model Inter-
comparison Project (ISI-MIP) (Warszawski et al., 2014). The relative
difference between modelled and observed values is shown in Fig. 7,
where the red boxes indicate regions analysed in Thurner et al. (2017)
in order to explain these discrepancies. In the boreal zone (boxes b1–4)
they were mainly attributed to the neglect of the effects of frost damage
on mortality in the models, while most of the models did not reproduce
observation-based relationships between mortality and drought in
temperate forest transects (boxes t1–3).

The more accurate estimates from BIOMASS, particularly over the
tropical belt, will greatly improve estimation of turnover across the
tropics (Bloom et al., 2016). This information will support improved
parameterisation of carbon cycling for ESMs, allowing identification of
regional variations in carbon turnover currently missing from tropical
plant functional types (Exbrayat et al., 2018a). A sensitivity analysis
performed using the CARDAMOM system (Bloom et al., 2016; Exbrayat
et al., 2018b) indicates an average reduction of 49.5 ± 29.2%

(mean ± 2 std) in the 95% confidence interval of the estimated ve-
getation carbon turnover time when the recent pan-tropical biomass
map due to Avitabile et al. (2016) is assimilated. The analysis shows
how this error reduction has clear spatial variability with latitude and
between continents (Fig. 8).

Another component of uncertainty in ESMs is in their initialisation
of biomass stocks, arising from the paucity of data in the tropics, Land
Use Change and internal model steady states. Data from BIOMASS will
provide the modelling community with a compelling resource with
which to understand both steady state and transient forest carbon dy-
namics. Observations of the disturbance regime will constrain model-
ling of both natural processes of disturbance and mortality and the role
of humans (Williams et al., 2013). The potential for BIOMASS to
monitor degradation (partial loss of biomass) will be critical for mod-
elling the subtle and slow processes of carbon loss associated with forest
edges, fires and human communities (Ryan et al., 2012; Brinck et al.,
2017).

Repeated measurements of biomass will allow significant improve-
ments in global monitoring of forest dynamics, and analysis of asso-
ciated carbon cycling at fine spatial scales. Current biomass maps (e.g.,
Saatchi et al., 2011a, 2011b) provide maps of stocks at a fixed time (or
combine observations from several times). While such data help to
constrain the steady state biomass, relevant at regional scales (~1°),
they give little information on the dynamics of forests at finer (ha to
km2) scales over time. BIOMASS will allow detailed, localised, and
temporally resolved analyses of forest dynamics to be constrained. The
value of such detailed information has been illustrated in a site level
analysis for an aggrading forest in North Carolina (Smallman et al.,
2017). Using in situ carbon stock information as a baseline, the analysis
showed that a model analysis constrained purely by assimilation of 9
sequential annual biomass estimates (corresponding to the BIOMASS
scenario, with 1 estimate in the Tomographic Phase and 8 in the In-
terferometric Phase) together with time series of Leaf Area Index (LAI,
e.g. from an operational satellite like Sentinel-2) led to significantly
smaller bias and narrower confidence intervals in biomass increment
estimates than when LAI and just one biomass estimate, or only man-
agement information, were assimilated. Bias in estimated carbon use
efficiency (the ratio of NPP to gross primary production) was also sig-
nificantly reduced by repeated biomass observations. This indicates the
potential of BIOMASS to improve significantly our knowledge of the
internal processing of carbon in forests.

9. Secondary objectives

BIOMASS will be the first P-band SAR in space and thus will offer
previously unavailable opportunities for measuring properties of the
Earth. As a result, mission planning includes provision for several sec-
ondary objectives, including mapping sub-surface geology, measuring
terrain topography under dense vegetation, estimating glacier and ice

Fig. 7. Relative difference between modelled carbon turnover rates and turnover rates inferred from observations. 1.0 means modelled rate is 100% higher (from
Thurner et al., 2017). Red boxes labelled b (boreal) and t (temperate) were analysed further in Thurner et al. (2017) to explain these discrepancies (figure reproduced
courtesy of Martin Thurner). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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sheet velocities and investigating properties of the ionosphere.

9.1. Sub-surface geology

In very dry environments, long wavelength SAR is able to probe the
sub-surface down to several metres, as was demonstrated at L-band
(1.25 GHz) during the first Shuttle Imaging Radar SIR-A mission (Elachi
et al., 1984), which revealed buried and previously unknown palaeo-
drainage channels in southern Egypt (McCauley et al., 1982; Paillou
et al., 2003). More complete L-band coverage of the eastern Sahara
acquired by the JAXA JERS-1 satellite was used to produce the first
regional-scale radar mosaic covering Egypt, northern Sudan, eastern
Libya and northern Chad, from which numerous unknown crater
structures were identified (Paillou et al., 2006). In 2006, JAXA laun-
ched the Advanced Land Observing Satellite (ALOS-1), carrying a fully
polarimetric L-band SAR, PALSAR, which offered higher resolution and
much better signal to noise ratio than JERS-1. This provided an un-
precedented opportunity to study the palaeo-environment and palaeo-
climate of terrestrial deserts (Paillou et al., 2010), and led to the dis-
covery of two major palaeo-rivers in North Africa: the Kufrah river, a
900 km long palaeo-drainage system, which in the past connected
southeastern Libya to the Gulf of Sirt (Paillou et al., 2009; Paillou et al.,
2012), and the Tamanrasett River in Mauritania, which connected a
vast ancient river system in the western Sahara to a large submarine
channel system, the Cap Timiris Canyon (Skonieczny et al., 2015).
Besides its value in studying the past climates of desert regions, the sub-
surface imaging capability of L-band SAR also helps to build more
complete and accurate geological maps in support of future water
prospecting in arid and semi-arid regions (Paillou, 2017).

Deeper probing of the sub-surface requires longer radar wave-
lengths: while L-band can penetrate 1–2m into dry sand, a P-band
system should be able to probe down to>5m. In June 2010, the first
ever airborne P-band SAR campaign over the Sahara was conducted at a

desert site in southern Tunisia using the SETHI system developed by
ONERA (Paillou et al., 2011). Fig. 9 shows a comparison between an
ALOS-2 L-band scene and a P-band scene acquired by SETHI over the
Ksar Ghilane oasis, an arid area at the border between past alluvial
plains and present day sand dunes.. The P-band data better reveal the
sub-surface features under the superficial sand layer because of the
higher penetration depth and lower sensitivity to the covering sand
surface. A two-layer scattering model for the surface and sub-surface
geometry is able to reproduce both the L- and P-band measured back-
scatter levels, and indicates that the backscatter from the sub-surface
layer is about 30 times weaker than from the surface at L-band, while at
P-band the sub-surface contribution is about 30 times stronger than that
from the surface. As a result, the total backscatter is comparable at P-
and L-band, as the data show, but the P-band return is dominated by the
sub-surface layer (Paillou et al., 2017). Hence BIOMASS should be a
very effective tool for mapping sub-surface geological and hydrological
features in arid areas, offering a unique opportunity to reveal the
hidden and still unknown history of deserts.

9.2. Terrain topography under dense vegetation

As an integral part of its ability to make height-resolved measure-
ments of the backscatter in forest canopies, the tomographic phase of
the mission will gain access to the ground phase, and hence will be able
to derive a true Digital Terrain Model (DTM) that is unaffected by forest
cover (Mariotti d'Alessandro and Tebaldini, 2018) and expected to have
a spatial resolution of ca. 100m×100m. This contrasts with the Di-
gital Elevation Models (DEMs) produced by radar sensors at higher
frequencies, such as SRTM (Rodriguez et al., 2005) or Tandem-X
(Wessel et al., 2018), in which attenuation and scattering by dense
forest canopies cause biases. Since global tomographic acquisitions
occupy the first phase of the mission, this improved DTM will be
available early in the Interferometric Phase, and will be used to

Fig. 8. The relative reduction in the size of the 95% con-
fidence interval of estimated vegetation carbon turnover
times when using a prior value for biomass at each pixel
compared to a run without a biomass prior. Turnover times
were estimated using the CARDAMOM system. The darker
areas show where reduction in relative uncertainty is largest.

Fig. 9. Left: SPOT image of the Ksar Ghilane oasis region in
southern Tunisia: palaeo-channels are hidden by aeolian sand
deposits. Middle: ALOS-2 L-band radar image, showing sub-
surface features but blurred by the return from the superficial
sand layer. Right: SETHI P-band radar image, clearly re-
vealing sub-surface hydrological features.
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improve the products based on Pol-InSAR and PolSAR.

9.3. Glacier and ice sheet velocities

The velocity fields of glaciers and icesheets can be measured using
two classes of SAR techniques: differential SAR Interferometry
(DInSAR) (Massonnet et al., 1993) and offset tracking (Gray et al.,
1998; Michel and Rignot, 1999). These techniques measure the ice
displacement between two observations and require features in the ice
or coherence between the observations. BIOMASS has the potential to
supplement ice velocity measurements from other SAR missions, since
its left-looking geometry with an inclination angle larger than 90°
means that the polar gap in Antarctica will be smaller than for most
other SAR missions, which are right-looking. The polar gap will be
larger in Greenland, but the Greenland ice sheet cannot be mapped due
to SOTR restrictions. The primary advantage of BIOMASS is the higher
coherence and longer coherence time resulting from the lower fre-
quency of BIOMASS compared to all other space-based SAR systems. Its
longer wavelength with deeper penetration into the firn ensures less
sensitivity to snowfall, surface melt and aeolian processes (Rignot,
2008). This is seen when comparing L-band and C-band results (Rignot,
2008; Boncori et al., 2010), and explains the long coherence time ob-
served in airborne P-band data acquired by the Danish Technical Uni-
versity POLARIS SAR in the percolation zone of the Greenland ice sheet
(Dall et al., 2013).

The range and azimuth components of the ice velocity field will
most likely be measured with differential SAR interferometry (DInSAR)
and offset tracking, respectively. At lower latitudes two velocity com-
ponents might instead be obtained by combining DInSAR from as-
cending and descending orbits, since the range resolution of BIOMASS
is too coarse for offset tracking to provide the range component (Dall
et al., 2013). Generally DInSAR ensures less noisy results, and phase
unwrapping is facilitated by the fact that the fringe rate of BIOMASS
DInSAR data will be 1/12 of that of Sentinel-1 data, assuming a 6-day
baseline in both cases. The very low ice velocities in the interior of
Antarctica call for a long temporal baseline, but a 70-day baseline has
been successfully used at C-band (Kwok et al., 2000), and therefore
sufficiently high P-band coherence is not unlikely with the 228-day
baseline provided by the BIOMASS observation cycle. However, iono-
spheric scintillation is severe at high latitudes, and without accurate
correction will corrupt the ice velocity maps, possibly prohibitively.
Assessment of whether proposed correction techniques (Kim et al.,
2015; Li et al., 2015) are sufficiently accurate will only be possible
when BIOMASS is in orbit.

9.4. Ionospheric properties

A major concern in initial studies for BIOMASS was the effect of the
ionosphere on the radar signal, and a crucial factor in the selection of
the mission was demonstration that these effects could be compensated
or were negligible in the context of the mission primary objectives

(Rogers et al., 2013; Rogers and Quegan, 2014). However, correction of
ionospheric effects (particularly Faraday rotation, but also scintillation,
as noted in Section 9.3) necessarily involves measuring them, which
then provides information on the ionosphere. The dawn-dusk BIOMASS
orbit will cover major features of the ionosphere, including the fairly
quiescent ionosphere at low and mid-latitudes, steep gradients around
the dusk-side mid-latitude trough, and large irregularities in the auroral
ovals and polar cap. Measurements of ionospheric Total Electron Con-
tent, derived from Faraday rotation (Wright et al., 2003) and/or in-
terferometric measurements (Tebaldini et al., 2017), should be possible
along the orbit at spatial resolutions of around a km, giving an un-
precedented capability to measure these spatial structures and their
changes, since they will be viewed every 2 h as the orbit repeats.

10. The role of BIOMASS in an overall observing system

BIOMASS will have unique capabilities to map biomass in dense
forests, but will form only part of the overall system of sensors pro-
viding information on forest biomass and biomass change, and more
generally on the global carbon cycle. In fact, the next few years will see
an unprecedented combination of sensors either dedicated to or capable
of measuring forest structure and biomass. Particularly important for
their links to BIOMASS will be the Global Ecosystem Dynamics
Investigation (GEDI) and NISAR missions.

GEDI will be a near infrared (1064 nm wavelength) light detection
and ranging (lidar) sensor onboard the International Space Station with
a 2-year lifetime from deployment in late 2018. It is focusing on tropical
and temperate forests to address three key issues: 1) quantifying the
above-ground carbon balance of the land surface; 2) clarifying the role
played by the land surface in mitigating atmospheric CO2 in the coming
decades; 3) investigating how ecosystem structure affects habitat
quality and biodiversity. GEDI will provide the first sampling of forest
vertical structure across all forests between 51.5° S and 51.5° N, from
which estimates of canopy height, ground elevation and vertical canopy
profile measurements will be derived. Further processing of the
~0.0625 ha footprint measurements will then yield estimates of the
mean and variance of AGB on a 1 km grid.

NISAR (launch 2021) is a joint project between NASA and ISRO (the
Indian Space Research Organization) to develop and launch the first
dual-frequency SAR satellite, with NASA providing the L-band (24 cm
wavelength) and ISRO the S-band (12 cm wavelength) sensors. It will
measure AGB and its disturbance and regrowth globally in 1 ha grid-
cells for areas where AGB does not exceed 100 t/ha, and aims to achieve
an accuracy of 20 t/ha or better over at least 80% of these areas. Its
focus is therefore on lower biomass forests, which constitute a sig-
nificant portion of boreal and temperate forests and savanna wood-
lands. NISAR will give unprecedented L-band coverage in space and
time, being able to provide HH and HV observations every 12 days in
ascending and descending orbits and covering forests globally every
6 days. The mission is also designed to give global interferometric SAR
measurements for surface deformation and cryosphere monitoring.

Fig. 10. Coverage of ESA and NASA-ISRO satellite
measurements of forest structure and above-ground
biomass (AGB). The background shows the global
coverage area of NISAR, which will be sensitive to
AGB values< 100 t/ha (green and yellow).
BIOMASS coverage includes the tropical belt, the
temperate and boreal zones of Asia, and the southern
hemisphere, while the GEDI Lidar will sample lati-
tudes between± 51.5°. These two sensors will cover
the full range of forest AGB providing measurements
where AGB>100 t/ha (red), so inaccessible to
NISAR. (For interpretation of the references to color
in this figure legend, the reader is referred to the web
version of this article.)
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These three missions have significant overlaps in science objectives
and products, but focus on different observations, cover different re-
gions, and retrieve different components of AGB at different spatial and
temporal scales. Their complementary nature is brought out by Fig. 10,
which shows the coverage of the three sensors on a map indicating
approximate mean AGB. BIOMASS will focus on tropical and sub-tro-
pical woodlands at 4 ha resolution (though will also cover the tempe-
rate and boreal forests of Asia and the southern hemisphere), NISAR
will give global coverage at 1 ha resolution but with AGB estimates
limited to areas where AGB < 100 t/ha, and GEDI will cover the full
range of AGB, but with sample footprints limited to lie within±51.5°
latitude. Hence without the data from all three missions, wall-to-wall
estimation of global forest biomass will not be possible. There will,
however, still be lack of temporal and/or spatial coverage in regions
where BIOMASS cannot operate because of SOTR exclusions and where
AGB exceeds the 100 t/ha threshold for NISAR.

For lower values of AGB (less than about 50 t/ha) P-band mea-
surements will be much more affected by soil conditions than L-band,
and NISAR should provide more accurate AGB estimates. The high
temporal frequency of NISAR observations will also allow the effects of
soil moisture changes and vegetation phenology to be mitigated.
Currently the theoretical basis of the algorithms proposed for NISAR
and BIOMASS are the same (Truong-Loi et al., 2015), which offers the
possibility of a combined L- and P-band algorithm that optimises the
capabilities of each. In addition, GEDI forest height and biomass pro-
ducts will be available before the NISAR and BIOMASS missions, so can
help to initialize their algorithms and validate their products. GEDI
estimates of the vertical structure of forests will also be of enormous
value in interpreting the BIOMASS Pol-InSAR and tomographic mea-
surements and in producing a consistent forest height and digital ter-
rain model at fine spatial scale (around 1 ha). Conversely, height or
backscatter products from NISAR and BIOMASS missions can provide
information on the spatial variability of forest structure and biomass;
this may be used in future reprocessing to improve both the algorithms
that form the GEDI gridded height and biomass products and the re-
solution of these products.

Hence the three sensors will be highly complementary, and their
combination will provide an unparalleled opportunity to estimate forest
AGB, height and structure globally with unprecedented accuracy, spa-
tial resolution and temporal and spatial coverage.

11. Discussion

Along with its role in quantifying the biomass and its change, it is
important to realize that the BIOMASS instrument, particularly in its
interferometric and tomographic modes, is capable of producing global
measures of important forest properties that are simply unavailable for
almost all of the Earth. Some of these are practical measurements whose
value has been known for years. For example, in forestry the ability to
predict yield or increase in biomass is increased greatly when one
knows both mass and height, so much so that tree height has been used
in yield-table-based forestry to quantify the so-called site-index, the
quality of a site for forest enterprise. Hence the information from the
BIOMASS satellite and the modern digital offspring of classic forestry
yield tables could be used to make informed estimates of expected net
production of forest biomass. In similar vein, Section 8 notes how the
combination of biomass with NPP allows the turnover time of carbon
within forest vegetation to be estimated. Both examples illustrate that
although forest biomass, height, structure and change are all in-
dividually important, their full significance for climate, carbon cycle,
biodiversity, resource management, etc., is only fully realised when
they are combined with each other and with other sources of in-
formation.

This perception of biomass as a key variable within a wider in-
formation system is implicit in the recognition of AGB as an ECV
(GCOS, 2017). More explicit analysis of its function within a carbon

information and management system is provided by the Group on Earth
Observations (GEO) (Ciais et al., 2010) and the response to this report
in the CEOS Strategy for Carbon Observations from Space (CEOS,
2014). In particular, the CEOS report (Fig. 2.3 and Table 2.1 of the
report) indicates where biomass fits within the set of key GEO satellite
requirement areas and core GEO observational elements necessary to
quantify the current state and dynamics of the terrestrial carbon cycle
and its components. Central to the GEO Carbon Strategy is the combi-
nation of data and carbon cycle models, not least because models
provide the only way in which the many available space-based and in
situ measurements can be integrated into a single consistent structure
for performing carbon flux calculations.

There are many possible forms for these models but data can in-
teract with them in essentially four ways: by providing estimates of
current model state variables, estimates of model parameters, tracking
of processes and testing of model predictions. In addition, data and
models can be even more tightly bound by combining them in a data
assimilation structure where both are regarded as sources of informa-
tion whose relative contribution to carbon flux estimates is weighted by
their uncertainty. There are already significant developments in ex-
ploiting biomass data in these ways, for example initializing the age
structure of forests when estimating the European carbon balance
(Bellassen et al., 2011), estimating carbon turnover time (Thurner et al.,
2017), testing Dynamic Global Vegetation Models (Cantú et al., 2018),
and full-scale data assimilation (Bloom et al., 2016). Further progress in
this direction is to be expected as we move towards launch in 2022.

12. Conclusions

BIOMASS mission will be the first space-based P-band radar, and
this completely new view from space will yield both predictable and
unforeseen opportunities to learn about the Earth and its dynamics.
Within the operational constraints imposed by the Space Object
Tracking Radar system (Section 2) the 5-year mission will provide
global mapping of forest AGB, height and change at 200m spatial re-
solution by combining three different radar techniques, each of them
innovative. This is the first space-based radar mission for which all
observations will be fully polarimetric, which is necessary both to re-
cover biomass information and to correct ionospheric effects. Even
more innovative will be this first systematic use of Pol-InSAR to mea-
sure forest height globally, and the first use of SAR tomography to
identify the vertical structure of forests globally. In parallel with these
major technological developments, considerable progress is being made
in developing new understanding and quantitative methods that will
allow these measurements to be exploited in carbon cycle and climate
models. This link between measurements and models forms an essential
part of meeting the primary objective of the BIOMASS mission, which is
to determine the worldwide distribution of forest AGB in order to re-
duce the major uncertainties in calculations of carbon stocks and fluxes
associated with the terrestrial biosphere, including carbon fluxes asso-
ciated with Land Use Change, forest degradation and forest regrowth.
Of major mutual advantage in meeting this objective will be the in-
formation provided by other space missions flying within the next five
years, for which pride of place goes to GEDI and NISAR, but supple-
mented by optical and other radar missions. Of great importance is that
the structures for making use of these new data in carbon cycle and
climate models are being developed and implemented.

The physical and technical capabilities embedded in the BIOMASS
mission in order to measure biomass can be turned to many other uses.
At present, known applications include sub-surface imaging in arid
regions, estimating glacier and icesheet velocities, and production of a
true DTM without biases caused by forest cover. An originally unfore-
seen application arising from the need to correct the radar signal for
ionospheric effects is to exploit the high sensitivity of the P-band signal
to Total Electron Content to estimate ionospheric properties and
changes along the satellite's dawn-dusk orbit. This is likely to be just
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one among many novel uses of the BIOMASS data, whose scope will
only become clear once BIOMASS is in orbit.
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